
Modelling the seasonal dynamics of 
Aedes albopictus populations using 
a spatio-temporal stacked machine 
learning model
Daniele Da Re1,2, Giovanni Marini2,3, Carmelo Bonannella4,5, Fabrizio Laurini6, 
Mattia Manica3,7, Nikoleta Anicic8, Alessandro Albieri9, Paola Angelini10, Daniele Arnoldi2, 
Federica Bertola11, Beniamino Caputo12, Claudio De Liberato13, Alessandra della Torre12, 
Eleonora Flacio8, Alessandra Franceschini14, Francesco Gradoni15, Përparim Kadriaj16, 
Valeria Lencioni14, Irene Del Lesto13, Francesco La Russa17, Riccardo Paolo Lia18, 
Fabrizio Montarsi15, Domenico Otranto18,20, Gregory L’Ambert19, Annapaola Rizzoli2,3, 
Pasquale Rombolà13, Federico Romiti13, Gionata Stancher11, Alessandra Torina17, 
Enkelejda Velo16, Chiara Virgillito12, Fabiana Zandonai11 & Roberto Rosà1

Various modelling techniques are available to understand the temporal and spatial variations of 
the phenology of species. Scientists often rely on correlative models, which establish a statistical 
relationship between a response variable (such as species abundance or presence-absence) and a set of 
predominantly abiotic covariates. The choice of the modeling approach, i.e., the algorithm, is itself a 
significant source of variability, as different algorithms applied to the same dataset can yield disparate 
outcomes. This inter-model variability has led to the adoption of ensemble modelling techniques, 
among which stacked generalisation, which has recently demonstrated its capacity to produce robust 
results. Stacked ensemble modelling incorporates predictions from multiple base learners or models as 
inputs for a meta-learner. The meta-learner, in turn, assimilates these predictions and generates a final 
prediction by combining the information from all the base learners. In our study, we utilized a recently 
published dataset documenting egg abundance observations of Aedes albopictus collected using 
ovitraps. and a set of environmental predictors to forecast the weekly median number of mosquito 
eggs using a stacked machine learning model. This approach enabled us to (i) unearth the seasonal 
egg-laying dynamics of Ae. albopictus for 12 years; (ii) generate spatio-temporal explicit forecasts 
of mosquito egg abundance in regions not covered by conventional monitoring initiatives. Our work 
establishes a robust methodological foundation for forecasting the spatio-temporal abundance of 
Ae. albopictus, offering a flexible framework that can be tailored to meet specific public health needs 
related to this species.
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Understanding the phenology of species — the study of periodic events in biological life cycles shaped by seasonal 
and annual climate fluctuations — is essential across fields like agriculture (e.g., crop yield forecasting1), nature 
conservation (e.g., assessing species responses to global changes2), and public health (e.g., managing allergens 
and emerging infectious diseases carried by arthropod vectors3). Ecologists have therefore developed and tested 
several modelling approaches, i.e. the mechanistic and correlative approaches, to infer the phenology of species 
and how it varies over space and time. The mechanistic approach employs laboratory or field observations about 
the influence of biotic or abiotic factors on the targeted life history traits (e.g. the effect of temperature on a 
juvenile form development rate) to parametrise mathematical models inferring the life cycle of the species of 
interest (e.g4–7). Although generally accurate, mechanistic models often require estimating multiple parameters 
and are therefore constrained by the availability of ecological observations in the scientific literature7,8. As an 
alternative, ecologists frequently turn to correlative models, which establish statistical relationships between a 
response variable (e.g., species abundance or presence-absence) and a set of mostly abiotic covariates9,10.

Despite the utility of correlative models, their outputs are subject to various sources of variability, such as 
sampling location bias and model tuning11–14. The choice of the modelling method, in addition, has proven 
influential, as different models applied to the same dataset can yield distinct results15–17. This inter-model 
variability has prompted the use of ensemble modelling techniques, also called consensus modelling, which 
involves fitting multiple independent algorithms on the same input data and then aggregating the individual 
models’ outputs to produce a final prediction, reducing the risk of overfitting and extrapolation issues17. 
While simple aggregation methods like averages and weighted averages have been traditionally used17,18, 
more advanced ensemble techniques, such as stacking or stacked generalisation19, have recently demonstrated 
superior performance20–23. In stacked ensemble modelling, multiple base models’ predictions serve as inputs 
for a meta-learner, which learns from these predictions and generates the ultimate prediction by combining 
information from all the base models.

Leveraging the strengths of spatio-temporal stacked modeling in capturing complex dynamic ecological 
processes, we applied this approach to infer the weekly egg abundance of the invasive mosquito Aedes albopictus 
in Southern Europe from 2010 to 2022. The ‘Asian tiger mosquito’ (Aedes (Stegomyia) albopictus), with its rapid 
expansion24,25 and critical role as a vector for outbreaks of vector-borne diseases26–29, presents a compelling case 
study for evaluating the model’s capability to accurately forecast spatio-temporal patterns of egg-laying activity 
and abundance, enabling targeted public health interventions.

Local public health authorities have established surveillance and monitoring initiatives to better understand 
the distribution, abundance, and seasonality of Ae. albopictus, supporting the development of proactive strategies 
for population and disease control. However, these efforts require significant economic and personnel resources. 
As a result, the implementation of passive surveillance systems — such as modeling techniques that reliably 
predict vector abundance and seasonal patterns — has been advocated to provide invaluable support to local 
public health agencies30. Although correlative models are commonly used to infer the geographic distribution 
of Ae. albopictus31, this study is, to our knowledge, the first to apply a stacked spatio-temporal model for this 
species, generating weekly maps of egg abundance that highlight the length and peak of the oviposition activity. 
The model enables the inference of seasonal egg abundance even in areas lacking active surveillance, providing 
crucial support for resource allocation in monitoring and surveillance efforts. These results lay a robust 
methodological foundation for forecasting the spatio-temporal abundance of Ae. albopictus and offer a flexible 
framework adaptable to specific public health needs associated with this species.

Methods
Biological observations and area of interest
We used Ae. albopictus’ egg counts obtained from monitoring activities conducted with ovitraps as the response 
variable in our models. Ovitraps are cheap and efficient monitoring tools consisting of a dark container filled 
with water and a substrate, usually a masonite stick, where container-breeding mosquitoes can lay their eggs. The 
egg-laying substrate is collected on a weekly or biweekly basis, depending on the local protocol adopted by the 
stakeholders, and the number of eggs laid on the egg-laying substrate counted.

We used the VectAbundance v0.15 database, which contains ovitrap observations from four European 
countries (Albania, France, Italy, and Switzerland) with active monitoring and surveillance programs for Ae. 
albopictus between 2010 and 202232. In VectAbundance, individual ovitrap observations were processed such 
that, if the monitoring period exceeded one week, egg counts were randomly distributed across the active weeks. 
Additionally, to account for microclimatic variability and sampling differences, the data were aggregated using 
the median within a 9 × 9 km grid (see Da Re et al.32 for a detailed description of the sampling protocols and 
data preprocessing).

The observations available in VectAbundance v0.15 are located in a geographical extent spanning from 6° 
to 21° E and from 36° to 47° N (Fig.  1). According to Cervellini et al.33, this area is characterised by three 
main biogeographical regions, namely Alpine, Continental, and Mediterranean (Fig. 1). Since the location of 
the ovitraps well represents these three biogeographical regions, we decided to limit the geographical area of 
extrapolation of the model to the abovementioned geographical extent and these biogeographical regions only.

Modelling
Stacked generalisation is a technique that combines predictions from multiple individual models, known as base 
learners or base models, to make a final prediction19,20,23,35. In stacked generalisation, the outputs of individual 
base learners serve as inputs to a meta-learner, which is another model that learns from the predictions of 
the individual models. The meta-learner then generates the final prediction by combining and synthesising 
the information from the individual models (Fig. 2a). Stacking has the potential to improve the accuracy and 
robustness of ecological models by leveraging the strengths of different models and effectively capturing complex 
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relationships in the data20. However, it is important to remark that while stacking can reduce model variance 
and improve predictions, it comes with trade-offs as it increases model complexity, reduces interpretability, and 
augments the computational time compared to individual models36.

Model formulation
As with all correlative models, stacked models require providing each base learner with a response variable and a 
set of covariates. We used as a response variable the weekly egg observations described in Sect. 2.1. As covariates, 
we selected three main environmental drivers that significantly influence the behaviour and development of 
mosquitoes, namely temperature, photoperiod (i.e., duration of daylight in 24  h) and precipitation37–43. 
Covariate preprocessing, including details on each variable’s ecological significance and specific preprocessing 
steps, is described in SM1.1 and omitted here for brevity. For each of these three covariates, we considered also 
their lagged values, since the mosquito life cycle can take several days or weeks to complete38,40. The lagged 
temperatures and photoperiod were calculated as the median value between the observations recorded in 
the current week (t), the previous week (t-1), and the week before that (t-2), whilst the lagged precipitation 

Fig. 1.  Biogeographical regions of Europe according to Cervellini et al.33 and the location (green dots) of the 
egg observations available in VectAbundance v0.15. The black lines represent the borders of the administrative 
areas of the countries of interest at the NUTS2 level. The map was created using R v4.334.
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was computed as the cumulative weekly value between the precipitation recorded in the current week (t), the 
previous week (t-1), and the week before that (t-2). We similarly processed these covariates also for lag t-3.

In addition to the environmental covariates, which we include as distributed lags, we considered seasonal 
and cyclical components. Specifically, we used the Fourier series, with sine and cosine harmonic waves, to 
accommodate the yearly pattern and shorter-term seasonality. For these calendar effects the Fourier terms offer 
a more parsimonious representation than dummy variables, in particular when the frequency of the data is 
large (see Hyndman and Athanasopoulos44, Ch. 7 Sect.  4). We selected four relevant harmonic: one pair of 
harmonics is used for describing the yearly evolution, whereas another pair of harmonics is needed to capture 
some seasonal patterns. The four trigonometric waves were added to the other environmental predictors and 
provided a significant contribution to describing the cyclic patterns and fluctuations in the median weekly 
number of eggs.

Based on the results of the explorative modelling (SM1.2), which suggested excluding lag-1 variables, and 
preliminary collinearity analysis (SM1.3), we designed two distinct but complementary models. The regression 
model infers the number of eggs as a function of temperature, photoperiod, and precipitation, all lagged by -2 
and − 3 weeks, and the four Fourier’s harmonics (Eq. 1).

	

Regression model:Egg count ∼ T emperature.lag2 + T emperature.lag3
+P hotoperiod.lag2 + P hotoperiod.lag3
+CumulativeP rec.lag2 + CumulativeP rec.lag3
+SineY ear + CosineY ear + SineSeasonal + CosineSeasonal

� (1)

The autoregressive model  (Eq. 2) adds to the predictors considered in the Regression model (Eq.  1) an 
autoregressive component based on the number of eggs observed at week t-1 (Egg count.lag1).

Fig. 2.  (a) A conceptual representation of the stacking approach; (b) Framework of the modelling approach 
presented in the study.
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Autoregressive model: Egg count ∼ Egg count.lag1 + T emperature.lag2 + T emperature.lag3
+P hotoperiod.lag2 + P hotoperiod.lag3
+CumulativeP rec.lag2 + CumulativeP rec.lag3
+SineY ear + CosineY ear + SineSeasonal + CosineSeasonal

� (2)

Stacked model
Each model formulation was applied to four individual base algorithms, namely extreme gradient boosting 
(xgBoost), boosted regression trees (BRT), random forest (RF) and cubist (Fig. 2b).

Extreme gradient boosting (xgBoost) is a powerful gradient boosting algorithm based on the concept of 
boosting, where weak models (typically decision trees) are sequentially trained to correct the mistakes made 
by the previous models45. The algorithm optimises an objective function by iteratively adding models to the 
ensemble, minimising the loss. xgBoost employs a gradient-based approach to improve the performance of 
the weak models and handle complex interactions among variables. Boosted regression trees (BRT) is a 
boosting algorithm that combines multiple decision trees to form an ensemble model46. Similar to xgBoost, 
BRT sequentially trains decision trees, with each subsequent tree focusing on correcting the errors made by the 
previous trees. The algorithm optimises an objective function by iteratively adding trees, and the final prediction 
is a weighted sum of the predictions from all the trees. Random Forest is an ensemble learning method that 
constructs a collection of decision trees and combines their predictions to make accurate predictions47. Each 
tree in the RF is built on a randomly sampled subset of the data and a randomly selected subset of features. This 
randomness helps to reduce overfitting and increase the diversity among the trees, and the final prediction is 
determined by averaging or voting the predictions from all the trees in the forest. Finally, cubist is a rule-based 
algorithm that combines decision trees with linear models. It creates a set of rules by recursively partitioning 
the data based on the predictor variables48. Each rule corresponds to a specific region of the feature space and 
predicts the response variable using a linear model. The algorithm iteratively builds a series of decision trees and 
linear models, optimising an objective function that balances accuracy and complexity.

We tuned the hyperparameters of each of the four machine-learning algorithms for both model formulations 
(Eqs. 1–2; Table 2.1). Then, for each model formulation separately, we combined the predictions of each tuned 
algorithm into the meta-learner, defined as a linear regression of the egg count (response variable) and the four 
algorithms’ predictions (covariates). Both meta-learners were used to predict the abundance of Ae. albopictus 
eggs over the period 2010–2022 on the training and validation datasets. The meta-learner trained with the four 
algorithms having as model formulation Eq.  1, i.e. the regression model, was also used to predict, and thus 
extrapolate, over the whole area of interest for the period 2010–2022.

Model validation
The egg observations were partitioned into one training and two testing datasets for the external and internal 
validation; (Fig. 2b). To conduct the external validation, i.e. using observations not used to train the models, 
we employed a random selection process choosing two VectAbundance’s ovitraps within each distinct NUTS2 
level for every biogeographical region. This selection was limited to VectAbundance’s ovitraps with a minimum 
of three years’ worth of observations, guaranteeing the presence of a robust time series for validation. These 
observations were excluded from the training dataset allowing for an exhaustive coverage of the longitudinal 
and latitudinal gradient of the area of interest. We excluded Sicily from the external validation dataset because 
it hosts only one ovitrap and represents the southernmost observation in the area of interest (see Fig. S3.1 for 
the locations of the ovitraps used for the external validation). After excluding these stations, we defined the 
training dataset as all the observations spanning from 2010 to 2021 and the internal validation dataset as all the 
observations gathered in 2022.

As an additional validation, we also performed a 10-fold cross-validation on the training dataset by retaining, 
for each fold, 70% of the observations to train the model. The class of models used is either regression or 
autoregression, so the standard k-fold cross-validation can be implemented, as suggested by Hyndman and 
Athanasopoulos44 (Ch 5. Section 10). To estimate the model’s predictive error we estimated, for each station and 
validation dataset, the root mean squared error (RMSE) and the mean absolute error (MAE).

Deriving pseudo-phenological indexes: introducing the period-over-threshold
In addition to utilising the regression stacked model for predicting the average number of eggs for each week 
within a given year across the area of interest, we also aimed to derive estimates about the predicted seasonality 
of Ae. albopictus’ egg-laying activity. Different approaches have been proposed to compute seasonal indexes of 
mosquitoes like onset (i.e. beginning of the season), peak, and offset (i.e., end of the season49,50). However, these 
approaches assume a repeated and even sampling of the species of interest, which, unfortunately, is not the case 
across the sampling locations of our dataset. Therefore, here we propose and define a pseudo-seasonal index that 
we call the period-over-threshold (POT).

The POT represents the period in which the variable of interest, i.e. the average number of eggs, is above a 
certain threshold. Here, we define the POT as the number of weeks in which the weekly average number of eggs 
is equal to or higher than 55 eggs, the spatially and weekly aggregated average median number of eggs (excluding 
zeros) observed over the whole area of interest during the period 2010–2022. We acknowledge that the POT, as 
defined here, is a heuristic approach, and therefore we performed a sensitivity analysis varying the threshold to 
20 and 125, defined by the average interquartile range (IQR) of the observed distribution.

Finally, we investigated if the observed and predicted POT have varied in time and space among the different 
biogeographical regions over the 2010–2022 period. We tested whether the length of the observed and estimated 
POT is affected by the year (quantitative) and the biogeographical regions (qualitative: Alpine/Continental/
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Mediterranean) and their interaction, using Generalised Linear Mixed Models (GLMMs) with Poisson error 
distribution and log link function, considering the ID of the VectAbundance’s ovitraps as a random factor. The 
same GLMM was applied to both the observational dataset used to train the regression-stacked model and a 
dataset of predictions for the period 2010–2022, generated by the regression-stacked model itself.

Results
Ovitraps dataset descriptive statistics
The 149 VectAbundance’s ovitraps are located in four European countries (Albania, France, Italy and Switzerland). 
Overall, 30 aggregated ovitraps were located in the Alpine biogeographical region, while 48 and 71 were located 
in the Continental and Mediterranean biogeographical regions, respectively. Most of the ovitraps were active 
during the period 2020–2022, with only a few stations that were monitored for more than three seasons32. 120 
aggregate ovitraps were used to train the models, whilst 19 were retained for the external validation.

Model outputs
The random forest algorithm showed the highest regression coefficient in the regression stacked model and so 
resulted as the most important algorithm (Table S2.2), while the most important environmental predictors were 
the 3-week-lagged temperature and photoperiod (Fig. S2.3A). On the other hand, cubist was the most important 
algorithm for the stacked autoregressive model, with the 1-week-lagged value of observed eggs being the most 
important predictor (Fig. S.2.3B).

Both stacked models were able to capture the seasonal and interannual variability of the ovitraps time series 
in the training dataset and both validation datasets (Figs.  3, S3.2). A detailed representation of the external 
validations for both models, broken down at the location level, is available in SM3 in Figs. S3.3–S3.4 for the 
regression and autoregressive models respectively. The predicted values for both the internal and external 
validation matched the observation patterns in the three biogeographical regions, with the autoregressive model 
showing, in general, a closer association with the observations. The autoregressive model showed overall a higher 
R2 and lower RMSE and MAE compared to the regression model in the training and both validation datasets 
(Table 1; Fig. S3.5). For both model formulations, both RMSE and MAE are lower in the Alpine biogeographical 
region compared to the Continental and Mediterranean regions; however, RMSE and MAE values within the 
Continental and Mediterranean regions show no significant differences between their respective training and 
testing datasets (Fig. S3.6).

Model R2 Residual standard error 10-fold CV RMSE 10-fold CV MAE

Regression 0.63 55.55 50.37 24.44

Autoregressive 0.85 35.38 34.39 12.66

Table 1.  Stacked model validation metrics from the 10-fold cross-validation made on the training dataset.

 

Fig. 3.  Median and interquartile range of the number of eggs observed (grey lines) and predicted by the 
regression model in both the internal and external validation. Both the observed and predicted values were 
aggregated over the three biogeographical regions to allow an easier representation.
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Spatial predictions
The spatio-temporal predictions of the stacked regression model for 2022 reveal seasonal and latitudinal 
variation in egg abundance across the study area (Fig. 4). Egg-laying activity begins in early spring, with the 
median number of eggs exceeding 50 from week 20 (mid-May) onwards. The peak of the season is estimated 
around week 30 (end of July), particularly in the Po and Rhone valleys and along the Adriatic, Ionian, and 
Tyrrhenian coasts. Egg abundance decreases after week 35 (end of August), but this decline follows a latitudinal 
and geographical gradient. In southern and coastal areas, predicted egg numbers remain above 100 through 
week 40 (early October), dropping below 50 only after week 45 (November). In alpine regions, egg-laying activity 
is restricted to warmer months, while in coastal areas, predictions indicate prolonged activity into late autumn.

Period-over-threshold
On average, the observed POT spans 7 (6–9 IQR) weeks for the Alpine biogeographical region, 20 (19–22 IQR) 
and 15 (14–16 IQR) weeks for the Continental and Mediterranean biogeographical regions, respectively. The 
predicted POT shows generally a shorter length, with 4 (3–5 IQR) weeks for the Alpine biogeographical region, 
and 17 (16–18 IQR) and 11 (9–12 IQR) weeks for the Continental and Mediterranean biogeographical regions 
respectively. The spatial representation of the predicted POT for the year 2022 (Fig. 5; POT IQR displayed in 
Fig. S3.7) shows a longer length of the POT in the Po Valley and coastal zones of the area of interest (POT > 20 
weeks). Mountainous and foothills areas show, on average, short (POT < = 5 ) or absent POT.

The Poisson GLMMs investigating the effect of the interaction between the year and the biogeographical 
regions on the POT show significant effects for all the explanatory variables and their interactions, except for the 
Alpine biogeographical region in the observed dataset (Table S3.8). The predicted values of the models trained 
on the observed and estimated POT showed a positive increase, independent from the reference year, for all the 
biogeographical regions but the Alpine in the observed dataset over the period 2010–2022 (Fig. 6).

Discussion
Ensemble modelling is a popular technique to mitigate the artefacts or errors that may arise from individual 
algorithm predictions. Among the different ensemble techniques available, stacking has recently risen as one 
of the approaches leading to a more robust and accurate final prediction20–23,51. In this study, we proposed a 
reproducible application of a stacked model to infer the spatio-temporal egg abundance of a species of interest, 
the Tiger mosquito Ae. albopictus. We stress that our approach can be replicated and applied to different case 
studies and species, as recently shown by Bonannella and colleagues20,21, if longitudinal observations on their 
abundance and phenology are available. The application of a stacked model on both regression and autoregressive 
model formulations resulted in reliable estimates of mosquito egg abundance, providing an important to support 
local public health authorities to better allocate monitoring and surveillance resources.

Fig. 4.  Median number of eggs predicted weekly by the regression model in the area of interest for the year 
2022. The black lines represent the borders of the administrative areas of the countries of interest at the NUTS2 
level. The grey areas are outside the area of interest. The map was created using R v4.334.
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Predictive accuracy of the models
The performance metrics of the regression and autoregressive models indicated a consistently strong predictive 
accuracy throughout the entire time series. Furthermore, the values of RMSE and MAE displayed similarities 
between the internal and external validation datasets. The autoregressive model showed generally higher 
predictive performance than the regression model, having the lagged number of eggs observed as the most 
important predictive variable. This was not unexpected, since the preliminary exploratory analysis (SM 1.2), 
made with genuine regression models, displayed strong empirical autocorrelation, of order one, in the residuals. 
However, the high predictive accuracy of the autoregressive model has the drawback of not being able to spatially 
extrapolate its predictions outside the training dataset. Whilst this can be seen as a limitation, it offers the 
opportunity of having accurate estimates and forecasts in specific locations, allowing the model to be informed 
with local and high-quality environmental information, using e.g. weather station observations. On the contrary, 
the regression model allowed us to spatially extrapolate the predictions in areas that were not previously 
sampled. The median number of eggs predicted over the study area for the year 2022 matches the expected 
seasonal dynamic of the species. Though egg-laying activity might occur in March and April, it increases around 
week 20 (mid-May) and ends in early October following elevational and latitudinal gradients43,50,52. In the 
alpine areas, our spatial estimates resembled those obtained using different modelling techniques and training 
datasets (e.g53). Previous dynamical distribution modelling approach forecasting Ae. albopictus eggs abundance 
at high spatial (0.01 latitudinal and longitudinal degrees) and temporal (weekly) resolution over ten Balkan 
countries projected annual peaks in egg abundance between the summer months of August and September 
i.e. approximately from weeks 32 to 3854. The field investigation in Albania in 2023 has shown the peak of the 
season in July (weeks 28-29-30) and another peak at the end of August and beginning of September (weeks 
35–36; personal communication of E. Velo). For the coastal areas of the Tyrrhenian Sea, the spatio-temporal 

Fig. 5.  Spatial representation of the predicted critical period-over-threshold (POT) for the year 2022 in the 
area of interest. White pixels are characterised by an average median weekly number of eggs always lower than 
55. The black lines represent the borders of the administrative areas of the countries of interest at the NUTS2 
level. The map was created using R v4.334.
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prediction of the stacked regression model confirms the results of previous studies carried out in central Italy, 
where the peak of activity and the end of the season is expected at the end of August and November, respectively 
(Fig. 4;42,50). Interestingly, these estimates based on ovitrap data (i.e. collection of eggs) comply with independent 
estimates obtained from data acquired collecting a different life stage of the mosquito (i.e., host-seeking females) 
at the two opposite ends of Italy (Trentino and Sicily) that identified the beginning of the season in mid-June and 
mid-March and the peak of the season in early August and August-September, respectively55,56.

Period-over-threshold
The pseudo-phenological index POT computed for Ae. albopictus during the year 2022 also showed latitudinal 
and elevational gradients, with the Po Valley and coastal areas having generally longer POT than mountainous 
areas. In the coastal areas of the Tyrrhenian Sea, the estimated POT is between 15 and 20, decreasing to 5 weeks 
in low mountain areas and to zero in high mountain peaks, similar to what was described in previous studies42,50. 
The spatial pattern depicted in Fig. 5 resembles those representing the estimates Ae. albopictus seasonal length 
presented by Petrić et al.57. However, the estimates of Petrić et al.57, based on multiple conditional statements of 
temperature and photoperiod, show a generally longer period of activity of the species compared to the estimated 
POT. This is not unexpected, because the two outputs are intrinsically different: the POT measures the length of 
the period over a user-defined threshold, whilst Petrić et al.57 have estimated the length of the period of activity 
of the mosquito considering the environmental conditions triggering eggs hatching, which in Mediterranean 
areas can begin in early March though at low density57.

In both the Continental and Mediterranean biogeographical regions, both observed and estimated POT 
durations have been increasing by approximately one week every year. This trend suggests a potential direct 
impact of global warming on the abundance of this species, as discussed in previous studies50,58–61. However, 
it is also essential to consider that the prolonged POT duration might be influenced by other factors, such as 
the increased monitoring efforts and the expanding range of the insect, leading to higher observed counts and 
longer POT periods.

Other threshold-based indexes have been proposed specifically for Ae. albopictus, but those are mostly 
epidemiological indexes (e.g62,63). We believe that the strength of the POT method lies in its broad interpretability 
and applicability. This approach can be employed not only in spatial epidemiology applications, as demonstrated 
in our case study but also in monitoring other alien species or supporting biological conservation efforts. It 
enables the identification of locations and periods when a particular population falls below or surpasses a 
defined threshold, signalling the need for targeted local interventions.

Limitations and future perspectives
As for most ecological models, one of the main limitations of these results relies on the quantity and quality of 
the training dataset64. First of all, egg observations were pooled from ovitraps having different volumes, shapes, 
oviposition substrates, revisiting times, etc32. This, unfortunately, is a limitation related to the different sampling 
and monitoring schemes employed by the different institutions32. Despite the preprocessing operation on the 
observations collected by the ovitraps, some of these sources of variability have likely influenced our results and 

Fig. 6.  Modelled relationships between the Period-over-threshold and the interaction between the year and 
biogeographical regions using a Poisson GLMM.
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therefore should be taken into account while interpreting them. Therefore, we want to highlight the importance 
of carrying out reproducible and comparable sampling schemes following the most updated standards for 
ovitraps monitoring, as those presented as the outcome of the AIM-COST cost action by Miranda et al.65.

Our dataset is also spatially biased because most of the observations are spatially clustered in north-central 
Italy, especially in the Emilia-Romagna region, where one of the most consistent and long-lasting surveillance 
programs has been carried out since 2010. The observations coming from this region had likely the highest 
quality, having been sampled continuously every two weeks from 2010 onwards. Spatial clustering is known to 
bias the models’ estimates and predictions66 and therefore has likely produced sub-optimal predictions in the 
southern part of the area of interest. This detrimental aspect of our outputs can only be resolved by increasing 
the sampling effort in the southern part of the study area.

Another potential source of variability in the training dataset is the effect of vector control practices affecting 
the abundance of collected eggs. Pest control agencies act to limit the abundance of the species and reduce the 
nuisance the bites are causing to the population67. Unfortunately, this is an effect that we cannot control, as we do 
not have access to the location and period of each pest containment treatment carried out in the area and period 
of interest. In addition to the coarse resolution of the climatic predictors, which may not fully capture fine-scale 
climatic variations influencing the mosquito life-cycle, we acknowledge the potential value of other relevant 
predictors not included in this study, such as land use/land cover and human population density. However, the 
exclusive placement of ovitraps in urban areas limits the availability of contrasting data needed to effectively 
incorporate these variables.

Despite these limitations, the proposed framework seems feasible to be implemented to produce both local 
and continental scale predictions and forecasts, contributing to supporting the stakeholders in their effort against 
Ae. albopictus. Using e.g. regional circulation models and/or weather generators, the methodology presented 
here can be used to produce estimates for the next seasons under different climatic scenarios. Interestingly, the 
presented methodology can be implemented and corrected during the season by including the results of the 
monitoring activities in the training dataset. The estimates of these models can also be compared to estimates 
produced by other correlative models (e.g68). , or mechanistic models such as albopictus69 and dynamAedes7, 
producing a plethora of models’ estimates accounting for different aspects of the biological system studied.

By employing the results of our modelling approach, public health authorities can make informed decisions 
regarding the implementation of control measures, allocation of resources, and targeted interventions to mitigate 
the risks posed by invasive mosquitoes and safeguard human and animal health. The latter aspect has gained 
particular interest during the past two decades when the impact of invasive species on public health has become 
more evident (e.g.,70,71). Apart from the public health aspect, we believe our work has a broader scope, providing 
a tool that can be adapted to infer the spatio-temporal abundance and seasonality of different species of interest.

Data availability
All the analyses were performed in R 4.3 (R Core Team 2023). All the R scripts used for the analysis are avail-
able at the GitHub repository https://github.com/danddr/stackedML. The R scripts are shared with detailed 
comments to foster the methodology reproducibility and its application to case studies and species different to 
invasive mosquitoes.
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